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1. Introduction

Multiphoton microscopy (MPM) is currently popular in in 
vivo imaging for biomedical studies, due to its advantages in 
deep penetration, 3D sectioning capability, and low phototox-
icity, etc [1–6]. In conventional MPM, a tight focus of ultra-
fast pulses is formed to enhance the excitation photon density 
for signal generation from nonlinear optical phenomena. 
Thus the origins of emission signals is confined to the focus, 
ensuring that MPM is less susceptible to tissue scattering. 
And the imaging can be performed by scanning the focal 
plane with a 2D mechanical scanner. However, the inertia of 
mechanical scanners, such as galvo and resonant galvo, would 
limit the imaging speed of such point scanning MPM consid-
ering [7–9]. The low imaging speed hampers studies of most 
high-speed biological dynamics [10, 11]. Recently, temporal 

focusing microscopy (TFM) has been proposed, which can 
achieve optical sectioning and wide-field excitation simulta-
neously [12–14]. By introducing an angular dispersion to the 
excitation femtosecond pulses with a grating, a temporal focus 
occurs when different frequency components overlap, which 
only happens within the focal region of the objective lens and 
thus ensures the confinement of two-photon wide-field exci-
tation with decent axial resolutions [15, 16]. Compared with 
the traditional point scanning MPM, TFM enables high-speed 
imaging by parallel excitation while maintaining the high 
axial confinement [17]. There are generally two modalities of 
TFM: planar-illumination TFM in which samples are illumi-
nated by a plane [17–19], and line-scanning TFM in which 
samples are illuminated by a mechanically sweeping line  
[20, 21]. Compared with the former one where the spatial 
focusing is weak, line-scanning temporal focusing micros-
copy (LTFM) exhibits higher robustness to scattering and 
better axial-confinement [22, 23]. The good balance between 
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imaging speed and axial resolution makes LTFM ideal for var-
ious applications, including laser processing [24] and large-
scale imaging of biological dynamics [25].

However, suffering from wavefront distortions induced by 
the random refraction and scattering in turbid samples, the 
excitation confinement of MPM progressively weakens as 
the penetration depth increases, which further deteriorates the 
signal contrast [26, 27]. For wavefront compensation, adap-
tive optics (AO) techniques, originally proposed in astronomy, 
was adopted in microscopy [28–35]. For planar-illumination 
TFM, Chang et al proposed a sensorless hill-climbing algo-
rithm based AO to compensate the tissue induced distortion, 
which could improve the axial excitation effectively [26]. 
However, such algorithm is time-consuming and may fall into 
a local optimum instead of reaching the global optimum, as a 
result of serial optimizations [36]. To the best of our knowl-
edge, no AO method has been proposed specifically for LTFM 
yet.

Here we propose the HSSCAC technique which searches 
for the globally optimized phase compensation in parallel in 
both spatial and spectral dimensions, specifically designed 
for LTFM for the first time. Firstly, we theoretically calcu-
late the effects of wavefront distortions in LTFM and prove 
the principle of HSSCAC. Secondly, we numerically demon-
strate that wavefront compensation in both spatial and spectral 
dimensions are more efficient than wavefront compensation in 
spectral domain only. Thirdly, we experimentally demonstrate 
that the proposed HSSCAC algorithm could fully recover the 
imaging quality but the hill-climbing algorithm may fail. We 
validate the improvement of imaging quality by imaging fluo-
rescent microspheres under a random wavefront induced by 
a deformable mirror (DM). We further demonstrate the per-
formance of HSSCAC in deep imaging of neurons in cleared 
mouse brains and in vivo dynamic imaging of microglia in 
living mouse brains.

2. Experimental setup and methods

2.1. System design

The schematic of our proposed system is illustrated in figure 1. 
The design introduces a DM into the LTFM setup for the com-
pensation of wavefront distortion. The beam from an 80 MHz 
laser (Chameleon Discovery, Coherent) with the pulse dura-
tion of ~120 fs at the central wavelength of 920 nm is used for 
two-photon excitation. An electro-optical modulator (EOM) 
(M3202RM, Conoptics) controls the laser intensity. The laser 
beam is then expanded by 2.5×  in diameter with a lens pair 
(L1: f  =  60 mm, L2: f  =  150 mm). The expanded laser beam 
is then scanned in the vertical direction with a 1D galvanom-
eter (GVS211, Thorlabs) and focused to a thin line on the sur-
face of the diffraction grating (Edmund Optics, 830 lines/mm) 
with a cylindrical lens (  f  =  300 mm). The incident angle to 
the grating is ~50° to ensure that the central wavelength of 
the 1st diffraction light is perpendicular to the grating surface. 
The spectrally-spread pulse is collimated with a collimating 
lens (L3: f  =  200 mm) and modulated with a DM (PTT111, 

Iris AO) placing at the focal plane of L3. The DM has 37 
segments, whose circumscribed diameters are 700 µm. The 
diameter of the incident 2D beam on the DM surface is about 
3.5 mm, which matches the aperture of the DM. A 4f telescope 
(L4, L5, both of f  =  300 mm) relays the modulated beam pro-
file to the pupil plane of the objective (60×, 1.0 NA, water 
immersion, Olympus, LUMPLFLN60XW). A line-shaped 
laser beam is formed at the focal plane of the objective, of 
around 80 µm in length. For each scanning period, we cap-
ture the image based on an epi-fluorescence setup including 
a dichroic mirror (DMSP750B, Thorlabs), a bandpass filter 
(E510/80, Chroma), a 200 mm tube lens (L6, TTL200-A, 
Thorlabs), and an sCMOS (Zyla 5.5 plus, Andor). Three-
dimensional imaging can be performed with the axial move-
ment of the sample stage (M-VP-25XA-XYZL, Newport).

2.2. Theoretical model of the proposed HSSCAC method

In this section, we will firstly calculate the excited signal 
intensity under distorted wavefronts on the sample, then 
derive algorithm to calculate the distorted phases in parallel.

The laser beam in LTFM is expanded in both spatial and 
spectral dimensions and fulfill the back pupil of the objec-
tive, as shown in the inset of figure 1(a). Thus DM could be 
modulated in both the spatial dimension (along the y-axis) 
and the spectral dimension (along the x-axis). Such rela-
tionship between x-axis and the spectral dimension could 
be described by the the light field at the back pupil of the 
objective [15]:

Upupil (x, y,ω) ∝ e−
(x−αω)2

s2 e−
y2

s2+α2Ω2 e−
ω2

Ω2 , (1)

here (x, y) is the cartesian coordinate of the input pupil plane, 
ω  is the beam frequency and α is a constant proportional to 
the groove density of the grating and the focal length of L3 
[16]. 

√
2 ln 2 · Ω is the full-width half maximum (FWHM) 

of the frequency spectrum of the pulse and 
√

2ln2 · s is the 
FWHM of each monochromatic beam in space. It can be seen 
that different spectral components are restricted around posi-
tion αω along x-axis, as shown in figure 1(a). Thus the DM 
could modulate spectral phases when it works on x-y dimen-
sions of the beam profile.

Assume that there is a piece-constant spatio-spectral wave-
front aberration on the pupil plane, thus the distorted light 
field could be approximated as

U′
pupil =

N∑
m=1

eiφm Pm (x, y)Upupil (x, y,ω) , (2)

Pm (x, y) =

®
1, if (x, y) ∈ Om

0, if (x, y) /∈ Om
, (3)

where φm is the sptaially specific distorted phase and Pm (x, y) 
is the support function. Om divides the back pupil into N  seg-
ments and ∪N

m=1Om fullfills the back pupil. By transforming 

U′
pupil to the focal plane, we could get the light field near the 

focal plane in the time domain [15]:
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U′
focal ∝ e

− t2

τ2
sweep

N∑
m=1

eiφm hm (x′′ + vsweept, y′′, z′′) , (4)

where

hm =

¨
Pm (x′, y′)P (x′, y′) e−

x′2+y′2

s2+α2Ω2 × eik0(
x′′x′+y′′y′

f + z′′ x′2+y′2

f 2 )dx′dy′.

 (5)
Here vsweep and τsweep are independent of the spatial coordi-
nates (x′′, y′′, z′′) and determined by the system. t represents 
time. P (x′, y′) is the pupil function of the objective. The two-
photon emission (TPE) signal is proportional to the forth 
power of the light field and could be written as

TPE ∝ C1

¨ ∣∣∣∣∣
N∑

m=1

eiφm hm (x′′, y′′, z′′)

∣∣∣∣∣
4

dx′′dy′′, (6)

where C1 is independent of z′′.
Now if we add linearly increasing phase to some of the 

pieces on the pupil [37, 38], as shown in the figure 1(b), the 
modulated light field could be written as

U′′
pupil (l) =

N1∑
m=1

ei(φm+aml)Pm (x, y)Upupil (x, y, t)

+
N∑

m=N1+1

eiφm Pm (x, y)Upupil (x, y, t) ,

 

(7)

here am is the increasing ratio of the linear modulation and l 
represents the modulations. We assume that

®
am + an > al

am − an < al
, ∀m, n, l ∈ [1, . . .N1] . (8)

Note that N1 < N . The modulated intensity signal could be 
written as the sum of different modulation segments [39],

TPE′ (l)

∝ C2
˜ ∣∣∣∣∣

N1∑
m=1

ei(φm+aml)hm (x′′, y′′, z′′) +
N∑

n=N1+1
eiφn hn (x′′, y′′, z′′)

∣∣∣∣∣
4

dx′′dy′′

=
N1∑

m=1
C(m) cos (aml + φm − Φr) + C3,

 

(9)

where C(m) is segment-specific constant and C3 is the combi-
nation of components with frequency not included am|1...N1. 
Φr is a combination of φn|N1+1...N  and keeps constant while 
modulating the first N1 segments. If we apply Fourier trans-
form to TPE′ (l) with respect to the variable l, then φm − Φr  
could be directly read out from the angle information of the 
TPE′ (l) in the frequency domain, as the figure  1(b) shows 
[40]. The achieved phases are then sign reversed and applied 
to the corresponding modulated segments. The second step is 
to exchange the modulated element group (the N1 elements) 
with the unmodulated element group (the remaining N − N1 
elements) and repeat the modulation and calculation proce-
dure, thus all the compensation phases could be determined. 
Note that Φr depends on the initial aberration of the system 
and thus could be different in the two steps. Benefiting from 
the nonlinearity in TPE, it can reach a convergence after sev-
eral iterations of these two steps [41].

From the calculation above, it can be seen that the pro-
posed HSSCAC algorithm is accurate (i.e. can reach the 
global optimum) under the assumption of piece-constant 
spatio-spectral phase aberration, and is independent of the 
initial phases. In contrast, in the hill-climbing algorithm, the 
initial phases would significantly affect the convergence [42]. 

Figure 1. (a) Diagrams of the system setup. The pulse intensity is modulated with an electro-optical modulator (EOM). After expansion 
(by L1 and L2), the beam is firstly compressed to a line at the grating surface with the cylinder lens and then spatially chirped by the 
grating. The spatio-spectral profile is modulated by a deformable mirror (DM) and then focused by the objective. The excited fluorescent 
signals are recorded by the sCMOS. Inset, the spatio-spectral distribution of the beam on back pupil of the objective (conjugated with the 
surface of DM). (b) Schematic of the parallel compensation algorithm for LTFM. The Symbols: HWP, half wave plate; Cyl. Lens, cylinder 
lens; M, reflective mirror; D, dichroic mirror.

J. Phys. D: Appl. Phys. 52 (2019) 024001
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Besides, the phase for each wavefront segment is determined 
independently and in parallel in our HSSCAC method, which 
will lead to a faster measurement and compensation proce-
dure. However, the hill-climbing algorithm can only work in 
serial.

3. Experimental results

All procedures involving mice were approved by the Animal 
Care and Use Committees of Tsinghua University.

3.1. Validation of the superior performance of HSSCAC  
compared with the spectral AO method

As shown in section  2.2, different segmentation strategies 
would affect the compensation results with the proposed algo-
rithm. Here we perform numerical simulations to demonstrate 
that the proposed algorithm shows superior performances in 
compensating in both spatial and spectral dimensions simul-
taneously (spatio-spectral segmentations, HSSCAC method) 
than compensating in the spectral dimension only (spec-
tral segmentations, spectral AO) as in [26]. For spectral AO 

compensation, the total 37 elements of the DM are arranged 
into seven segments to modulate the phase of seven spectral 
components correspondingly, as shown in the figure 2(a). For 
HSSCAC, the total 37 elements of the DM are modulated 
independently as shown in the figure 2(b). After loading the 
initial wavefront distortion (shown in the figure 2(c)) to the 
back pupil of the objective, the distorted light field propagates 
through the objective as described in the Fresnel diffraction 
[43], then forms a focus [44]. In both cases, the algorithm 
is run for three rounds (i.e. iterations) [40, 45]. Figures 2(d) 
and (e) show the residual phase with the spectral AO method 
and the HSSCAC method, respectively. We could see that the 
HSSCAC method could fully compensate the distortion and 
retrieve a flatten phase, while the spectral AO method could 
only compensate parts of the distorted phase. We repeat the 
simulations for 30 times with different random initial wave-
front distortions and record the intensity improvements with 
iteration steps in figure 2(f) (we define the signal under flatten 
phase to be 1). It is shown that the increasing curve of the 
HSSCAC method is much steeper than that of the spectral 
AO method, and HSSCAC could fully retrieve the signal 
intensity with no wavefront distortions. Note that, due to the 

Figure 2. Comparison of spectral AO and hybrid AO (HSSCAC) via numerical simulations. (a) Spectral AO: dividing the back pupil of 
the objective (conjugation to the DM) into seven segments corresponding to the spectral profile. (b) Hybrid AO: dividing the back pupil 
of the objective into 37 segments corresponding to the spatio-spectral profile. (c) Preloaded spatio-spectral phase distortion. (d) Residual 
phase after spectral AO compensation. (e) Residual phase after hybrid spatio-spectral AO compensation. (f) Intensities improvement with 
iterations (30 trials, signal under flatten phase is 1). Red, HSSCAC; blue, spectral AO.

J. Phys. D: Appl. Phys. 52 (2019) 024001
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discretization in the simulation, some trials converge to lower 
signal intensities than 1, while most of the trials succeeds to 
reach the ideal plateau.

3.2. Validation of the global optimum performance  
of HSSCAC

We further experimentally demonstrate that HSSCAC could 
fully compensate the wavefront distortion. In contrast, the 
hill-climbing method [26] may fail.

For the HSSCAC method, we sets 5 ms for each modula-
tion and another 5 ms for the camera to capture images (by 
selecting a small ROI in the sCMOS). For the DM of 37 mod-
ulation elements employed in our experiment, the minimum 
number of phase modulations required is 74 according to the 
Nyquist–Shannon theorem. In practical experiments, we per-
form 148 measurements. We divide all the elements randomly 
into two groups with N1  =  18. One group is modulated while 
the other group is kept stationary. We run three iterations (i.e. 
six modulation steps). At the end of each modulation step, the 
recorded nonlinear fluorescent signal is Fourier transformed 
and the achieved phase profile is sign reversed and applied to 
the modulated group.

For the hill-climbing method, all the 37 segments are 
used, but the phase measurement is achieved as below [26]: 
we apply variable phases stepwisely (step by π/10, from 0 
to 2π) onto every segment, then position them at the phases 

corresponding to the maximum image intensity during the 
measurements. Note that in this condition, the number of 
measurements for the hill-climbing method is 370, which is 
sufficient to ensure the measurement accuracy but would cost 
two times longer than that of the HSSCAC method.

We preload a random wavefront to the DM and park the galvo 
at the center of the FOV to capture the static line-excitation 
from a fluorescent plastic plate (Chroma). Figure 3(a) shows 
the captured line-excitation patterns with a random wavefront, 
the compensation wavefront calculated with the hill-climbing 
algorithm, and the compensation wavefront calculated with 
HSSCAC. From the intensity profile along the dashed line in 
figure  3(b), it can be seen that HSSCAC could improve the 
fluorescent signal higher than that of the hill-climbing method. 
Furthermore we check the residual wavefront after running 
both methods and find that there remains some random dist-
ortions after compensation with the hill-climbing method. 
In contrast, the residual wavefront distortion of HSSCAC is 
minor, induced by the nonuniformity of the excitation beam 
(the intensity in the right border of the DM is quite low, thus 
the phase compensation there affects much less than the other 
area). The failure of the hill-climbing method could also be 
seen from the signal increasing curve in figure 3(d), where it 
reaches a plateau much earlier at a lower signal intensity (i.e. it 
falls into a local optimum but missed the global one). In com-
parison, HSSCAC is independent of the initial phase and could 
reach the global optimum every time.

Figure 3. (a) Imaging results under a random initial wavefront, with the hill-climbing algorithm and the HSSCAC. (b) Intensity profiles 
along the dashed line in (a). Red, HSSCAC; blue, hill-climbing; yellow, the random initial phase. (c) Residual phase after hill-climbing 
(left) and HSSCAC (right). (d) Intensities increase with iteration step. Red, HSSCAC; blue, hill-climbing. (d). Scale bar: 15 µm.

J. Phys. D: Appl. Phys. 52 (2019) 024001
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Figure 4. (a) Imaging results of 1 µm fluorescent microspheres with and without the HSSAC algorithms under a random initial phase. (b) 
Intensity along the marked lines in x-y plane. (c) Intensity along the marked lines in x-z plane. Scale bar in a: 5 µm. Legends in (b) and (c): 
red, HSSCAC; blue, a random initial wavefront.

Figure 5. (a) and (b) MIPs along the z-axis of a 40 µm-thick image stack (400–440 µm deep) acquired with the system and full correction, 
respectively. (c) Zoom-in view of the dashed box in (a) and (b). (d) Intensity profiles along the marked lines in (c). (e) MIPs along x-axis of 
a 12 µm thick y-z stack (marked by the dashed box in (a)) acquired with the system (left) and full AO correction (right). MIPs of y-z stack 
are shown with the bilinear interpolation along z-axis to equate the lateral and axial pixel sizes. (f) Intensity profiles along the indicated 
lines in (e). (g) Wavefront pattern for full compensation. Scale bar: 5 µm in (a), (b) and (e); 2.5 µm in (c). Legends in (d) and (f): red, full 
correction; blue, system correction.

J. Phys. D: Appl. Phys. 52 (2019) 024001
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3.3. Imaging results with fluorescent microspheres

Then we demonstrate the effectiveness of HSSCAC in imaging 
fluorescent microspheres. We first add a random initial wave-
front to the DM, then run HSSCAC. Figure 4(a) shows the 
maximum intensity projection (MIP) of 1 µm microspheres 
(T14792, Thermo Fisher) along z-axis (MIP of a 15 µm x-y 
stack) and along y-axis (MIP of a 30 µm x-z stack). It can 
be seen that with HSSCAC, the fluorescent signals are much 
stronger compared with the images without AO compensa-
tion. In figures  4(b) and (c), we quantitatively compare the 
intensities in lateral and axial planes by drawing the intensity 
profiles along the dashed lines in figure 4(a), and show the 
obvious improvement.

3.4. Deep imaging of neurons in Thy1-YFP mouse brains 
after tissue clarity

We image the cleared brains of the Thy1-YFP (H line) mice 
(JAX No. 003782) by uDISCO (ultimate 3D imaging of 

solvent-cleared organs) to further investigate the effectiveness 
of HSSCAC technique in the imaging of biological tissues 
[46]. The mice are deeply anesthetized, and perfused with 
phosphate buffered saline (pH 7.4) followed by 4% para-
formaldehyde for fixation. The brains are dissected and cut 
into 1 mm coronal slices after overnight fixation. The slices 
are sequentially dehydrated in a series of tert-butanol (30%, 
50%, 70%, 80%, 90%, 96%, and 100%, 2 h for each step) 
at room temperature. The dehydrated slices are incubated in 
BABB-D4 (BABB: benzyl alcohol/benzyl benzoate  =  1/2, 
BABB-D4: BABB/diphenyl ether  =  4/1) for more than 1 h at 
room temperature until they become optically transparent.

We take imaging at ~400 µm depth under the surface of the 
slices, and show the MIPs of a 40 µm thick x-y image stack 
with system correction (correction of system induced aberra-
tion) and full correction (correction of both system and sample 
induced aberrations), with HSSCAC in figures 5(a) and (b), 
respectively. It can be seen that signals in the image achieved 
with HSSCAC are much stronger. In figure 5(c), we show that 

Figure 6. (a) MIP along z-axis of a 25 µm-thick image stack (110–135 µm under the dura) acquired with the HSSCAC algorithm. (b) 
Zoom-in views of lateral area marked by the dashed box in (a) with full correction (upper) and system correction (lower), respectively. 
(c) Intensity profiles along the indicated lines in (b). (d) MIPs along y-axis of an 18 µm thick x-z stack (marked by the dashed box in 
(a)) acquired with full correction (left) and with system correction (right), respectively. The MIPs of x-z stacks are shown with bilinear 
interpolation along z-axis to equate the lateral and axial pixel sizes. (e) Intensity profiles along the indicated lines in (d). (f) Dynamics of the 
microglia in 40 min (with 10 min interval), merged with different colors. (g) Wavefront pattern for full correction. Scale bars in (a) and (d) 
and (f) are 10 µm, in (b) is 2 µm. Legends in (c) and (e): red, full correction; blue, system correction.

J. Phys. D: Appl. Phys. 52 (2019) 024001
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spines on the dendrite are much clearer with HSSCAC. In 
figure 5(d), we also show that HSSCAC can resolve the fine 
structures along the dendrite marked by the white dashed line 
in figure 5(c). In figure 5(e), we show MIPs along x-axis of a 
12 µm thick y-z image stack (marked by the dashed white box 
in (a)). The corresponding intensity profiles along the indi-
cated lines in figure 5(e) are shown in figure 5(f), which shows 
that HSSCAC can increase the signal intensity obviously. The 
full compensation phase pattern is shown in the figure 5(g).

3.5. In vivo dynamic imaging of CX3CR1-GFP mice

We also demonstrate the performance of the proposed tech-
nique in in vivo imaging of living Cx3Cr1-GFP mouse (JAX 
No. 005582) brains. After craniotomy, we conduct acute 
imaging with the living mice under shallow anesthesia [28] by 
continuous inhalation of isoflurane and being head-restrained 
under the objective. In figure 6(a), we show the MIP along the 
z-axis of a 25 µm-thick image stack (110–135 µm under the 
dura) acquired with the HSSCAC technique. By comparing 
the intensities of fine processes of the microglia, we could 
see that HSSCAC could apparently improve the signal level, 
which enables us to easily resolve the structures, as shown 
in figures 6(b). In figure 6(c), we quantitatively compare the 
signal improvement along the dashed line in figure 6(b) with 
system correction and full correction using the HSSCAC 
algorithm. Figure 6(d) shows the MIP along the y-axis of an 
18 µm-thick x-z image stack (marked by the dashed box in 
figure  6(a)). The corresponding intensity profiles along the 
indicated lines are shown in figure 6(e). It can be seen that the 
signals are much higher after full correction. We also perform 
time-lapse imaging of the microglia dynamics in 40 min after 
performing HSSCAC, as shown in figure 6(f) where morphol-
ogies at different time points are color coded. It can be seen 
the measured wavefront for compensation is still valid after 
40 min at least. Figure 6(g) is the wavefront pattern for full 
correction measured by HSSCAC, which is complex due to 
the strong scattering of the mouse brain.

4. Discussion and conclusion

The HSSCAC algorithm can effectively enhance the signals 
in deep tissue imaging. Limited by the low energy of femto-
second pulses available from our laser source, we only demon-
strated the proof-of-concept experiments. To perform imaging 
at larger penetration depths with higher signal-to-noise ratios, 
a femtosecond laser of a low repetition rate but a high pulse 
energy would help.

In summary, we have demonstrated the HSSCAC algorithm 
that could fully compensate wavefront distortions in LTFM, 
for the first time. Through both simulations and experiments, 
we show that the HSSCAC algorithm performs better than the 
spectral AO method, and can retrieve the global optimized 
compensation while the hill-climbing algorithm may fail. We 
further validated the performance improvement of HSSCAC 
in deep imaging of neurons in cleared mouse brains and in 
vivo dynamic imaging of microglia in living mouse brains.
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